The generator matrix

 1  0  0  1  1  1  1  1  1  1  1 2X  6  1  1  1 X+3  6  0  1  1  1  1  1  1 2X  1  1  1 2X  1 2X+6  1  1 2X+6  1 X+6  1  1  1  1 2X+3  1 X+6  X  1  1  1  1  1  0  1  1  1  3  1  1  1  X  1  1 X+3
 0  1  0  0  6 2X+4  2 X+4 2X+7 2X+2  5  1  1 X+3  1 X+8  1  1  1 X+2 X+1 2X+7 X+8 2X+3  6 2X+3  4 X+5  2  1 2X  0  7  5  1 2X+3  1 X+6 X+3  1 X+4  1  2  X  1 X+6 X+2 2X+5 2X+6  5  1 X+8  0  6  X X+5  X  8  1  7 2X+8  1
 0  0  1 2X+4  2  5 X+2  4  0 2X+7  X X+4  2 2X+6 2X+1 2X+1  6 2X+2 X+1  5  2 2X X+6  1 X+5  1 X+2 X+7 2X+6 2X+4  0  1 X+4 2X+8  X X+8 2X+2 2X+7  6  3 X+4 2X+3 2X+6  1 X+5 X+1 2X+5 X+5  2  3 2X+6 2X+3  4 X+3  1  6 2X+6  1 X+1  X  8  0
 0  0  0  3  3  3  3  3  3  3  3  0  0  3  0  6  6  6  6  6  0  6  0  0  0  3  6  0  6  3  6  6  6  0  3  6  3  6  6  0  3  0  0  0  6  3  3  6  3  6  3  0  6  3  6  3  6  3  3  3  6  6

generates a code of length 62 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 116.

Homogenous weight enumerator: w(x)=1x^0+714x^116+1146x^117+2088x^118+3354x^119+3892x^120+4050x^121+5592x^122+5890x^123+5868x^124+6042x^125+4864x^126+4824x^127+4320x^128+2546x^129+1512x^130+1188x^131+800x^132+126x^133+114x^134+28x^135+30x^137+24x^138+24x^140+6x^141+6x^143

The gray image is a code over GF(3) with n=558, k=10 and d=348.
This code was found by Heurico 1.16 in 7.11 seconds.